2.7 KiB
В случае классической задачи, поиска пути минимальной длины между двумя вершинами графа, мы поддерживаем в каждой посещенной алгоритмом вершине графа минимальную длину пути до этой вершины. Здесь стоит оговориться, что будем именовать множество X посещенными вершинами, а V - X - часть графа, для которой еще нужно найти величину пути или узкого места.
В отличии от классического алгоритма, решение этой задачи должно поддерживать величину актуального узкого места пути, приводящего в вершину v ∈ X. А при добавлении новой вершины из V - X, мы должны смотреть не увеличивает ли ребро (v,u_1) величину узкого места пути, которое теперь приводит в u_1. Если ребро (v, u_1) увеличивает узкое место, то лучше рассмотреть вершину u_2, ребро (v, u_2) до которой легче (v,u_1). Поиск неувеличивающих узкое место ребёр нужно осуществлять не только среди соседей определенного узла v, но и среди всех v ∈ X, поскольку отдавая предпочтение вершине, путь в которую имеет наименьшее узкое место в данный момент, мы гарантируем, что мы не ухудшаем ситуацию для других вершин.
В результате разбора выше, предлагается руководствоваться следующей формулой при выборе очередной вершины из непосещенных и обновлении величин, которые мы поддерживаем:
Стоит пояснить, что поиск по v ∈ X осуществляется, только для существующих связей (v,u), а w(v,u) - это вес ребра (v,u).
Очевидно, что сложность такого алгоритма такая же, как и у классического алгоритма Дейкстры. При использовании кучи - O(m*log(n)).