|
|
|
@ -46,23 +46,23 @@ opPriority (Number _) = 3
|
|
|
|
|
transform:: [Maybe Token] -> [Token]
|
|
|
|
|
-- tokens - stack - output
|
|
|
|
|
transform ts = transform' ts [] [] where
|
|
|
|
|
transform' [] [] q = q
|
|
|
|
|
transform' [] s q =
|
|
|
|
|
if head s == ParenOpen
|
|
|
|
|
transform' [] [] out = out
|
|
|
|
|
transform' [] st out =
|
|
|
|
|
if head st == ParenOpen
|
|
|
|
|
then error "Mismatched parentheses"
|
|
|
|
|
else transform' [] (tail s) (q ++ [head s])
|
|
|
|
|
transform' (x:xs) s q = case x of
|
|
|
|
|
else transform' [] (tail st) (out ++ [head st])
|
|
|
|
|
transform' (t:ts) st out = case t of
|
|
|
|
|
Nothing -> error "Illegal tokens"
|
|
|
|
|
(Just (Number n)) -> transform' xs s (q ++ [Number n])
|
|
|
|
|
(Just ParenOpen) -> transform' xs (ParenOpen:s) q
|
|
|
|
|
(Just ParenClose) -> transform' xs s0 q0 where
|
|
|
|
|
s0 = tail $ dropWhile (/= ParenOpen) s
|
|
|
|
|
q0 = q ++ takeWhile (/= ParenOpen) s
|
|
|
|
|
(Just o1) -> transform' xs s1 q1 where
|
|
|
|
|
cond o2 = isOp o2 && (opPriority o1 < opPriority o2)
|
|
|
|
|
spl = span cond s
|
|
|
|
|
s1 = o1 : snd spl
|
|
|
|
|
q1 = q ++ fst spl
|
|
|
|
|
Just (Number n) -> transform' ts st (out ++ [Number n])
|
|
|
|
|
Just ParenOpen -> transform' ts (ParenOpen:st) out
|
|
|
|
|
Just ParenClose -> transform' ts st0 out0 where
|
|
|
|
|
st0 = tail $ dropWhile (/= ParenOpen) st
|
|
|
|
|
out0 = out ++ takeWhile (/= ParenOpen) st
|
|
|
|
|
Just o1 -> transform' ts st1 out1 where
|
|
|
|
|
cond o2 = isOp o2 && (opPriority o1 <= opPriority o2)
|
|
|
|
|
spl = span cond st
|
|
|
|
|
st1 = o1 : snd spl
|
|
|
|
|
out1 = out ++ fst spl
|
|
|
|
|
|
|
|
|
|
eval :: [Token] -> Token
|
|
|
|
|
eval ts = head $ eval' [] ts where
|
|
|
|
@ -74,8 +74,8 @@ eval ts = head $ eval' [] ts where
|
|
|
|
|
rem = tail . tail
|
|
|
|
|
in case t of
|
|
|
|
|
Number n -> eval' (t : st) ts
|
|
|
|
|
AddOp -> eval' ((Number (fstNum st + sndNum st)) : (rem st)) ts
|
|
|
|
|
MulOp -> eval' ((Number (fstNum st * sndNum st)) : (rem st)) ts
|
|
|
|
|
AddOp -> eval' ((Number (sndNum st + fstNum st)) : (rem st)) ts
|
|
|
|
|
MulOp -> eval' ((Number (sndNum st * fstNum st)) : (rem st)) ts
|
|
|
|
|
DivOp -> eval' ((Number (sndNum st / fstNum st)) : (rem st)) ts
|
|
|
|
|
SubOp -> eval' ((Number (sndNum st - fstNum st)) : (rem st)) ts
|
|
|
|
|
eval' st [] = st
|
|
|
|
|