Add files via upload
commit
adfe360621
@ -0,0 +1,60 @@
|
||||
#break cryptosystem if know a half of private key
|
||||
|
||||
import numpy as np
|
||||
import galois
|
||||
|
||||
import pubkey
|
||||
import privkey
|
||||
import message
|
||||
|
||||
n = 127
|
||||
k = 32
|
||||
order = 2 ** 7
|
||||
GF = galois.GF(order)
|
||||
|
||||
def main():
|
||||
G_ = GF(pubkey.get()) #we need to know a public matrix
|
||||
P = GF(privkey.get_P()) #and P - only one of two private matrices
|
||||
S = break_S(P, G_) #to calculate S - the second part of private key
|
||||
c = GF(message.get())
|
||||
print(decode(S, P, c)) #and decode the message
|
||||
|
||||
def unpad_message(msg):
|
||||
padding_byte = msg[-1]
|
||||
for i in range(1, padding_byte + 1):
|
||||
if msg[-i] != padding_byte:
|
||||
raise ValueError("Incorrect padding!")
|
||||
return msg[:-padding_byte]
|
||||
|
||||
def my_fix(A):
|
||||
#make square matrix by deleting right columns
|
||||
l = len(A)
|
||||
r = GF.Zeros((l, l))
|
||||
for i in range(l):
|
||||
for j in range(l):
|
||||
r[i][j] = A[i][j]
|
||||
return r
|
||||
|
||||
def decode(S, P, c):
|
||||
rs = galois.ReedSolomon(n, k, field=GF)
|
||||
c = c @ np.linalg.inv(P)
|
||||
c = rs.decode(c)
|
||||
c = c @ np.linalg.inv(S)
|
||||
c = [int(i) for i in c]
|
||||
c = unpad_message(c)
|
||||
c = bytes(c)
|
||||
c = c.decode()
|
||||
return c
|
||||
|
||||
def break_S(P, G_):
|
||||
#G_ = S @ G @ P
|
||||
rs = galois.ReedSolomon(n, k, field=GF)
|
||||
G = rs.G
|
||||
G_ = G_ @ np.linalg.inv(P)
|
||||
G_ = my_fix(G_)
|
||||
G = my_fix(G)
|
||||
S = G_ @ np.linalg.inv(G)
|
||||
return S
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,37 @@
|
||||
import numpy as np
|
||||
import galois
|
||||
|
||||
import privkey
|
||||
import message
|
||||
|
||||
n = 127
|
||||
k = 32
|
||||
order = 2 ** 7
|
||||
GF = galois.GF(order)
|
||||
|
||||
def main():
|
||||
S = GF(privkey.get_S())
|
||||
P = GF(privkey.get_P())
|
||||
c = GF(message.get())
|
||||
print(decode(S, P, c))
|
||||
|
||||
def unpad_message(msg):
|
||||
padding_byte = msg[-1]
|
||||
for i in range(1, padding_byte + 1):
|
||||
if msg[-i] != padding_byte:
|
||||
raise ValueError("Incorrect padding!")
|
||||
return msg[:-padding_byte]
|
||||
|
||||
def decode(S, P, c):
|
||||
rs = galois.ReedSolomon(n, k, field=GF)
|
||||
c = c @ np.linalg.inv(P)
|
||||
c = rs.decode(c)
|
||||
c = c @ np.linalg.inv(S)
|
||||
c = [int(i) for i in c]
|
||||
c = unpad_message(c)
|
||||
c = bytes(c)
|
||||
c = c.decode()
|
||||
return c
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,40 @@
|
||||
import numpy as np
|
||||
import galois
|
||||
|
||||
import pubkey
|
||||
|
||||
n = 127
|
||||
k = 32
|
||||
order = 2 ** 7
|
||||
GF = galois.GF(order)
|
||||
|
||||
def main():
|
||||
G_ = GF(pubkey.get())
|
||||
print("Message to encode (max len = k-1 = 31):")
|
||||
message = input()
|
||||
if len(message) > k-1:
|
||||
print("Message is too long!")
|
||||
return
|
||||
ct = encrypt(G_, message)
|
||||
ct = list(map(int, ct))
|
||||
export(ct)
|
||||
print("Done!")
|
||||
|
||||
def pad_message(msg: bytes, pad_size: int) -> list[int]:
|
||||
padding = pad_size - (len(msg) % pad_size)
|
||||
return list(msg + padding.to_bytes() * padding)
|
||||
|
||||
def encrypt(G_, text):
|
||||
msg = pad_message(text.encode(), k)
|
||||
m = GF(msg)
|
||||
c = m.T @ G_
|
||||
return c
|
||||
|
||||
def export(ct):
|
||||
output = "ct = [ " + ", ".join([str(int(cell)) for cell in ct]) + " ]"
|
||||
with open("message.py", "w") as f:
|
||||
f.write(output)
|
||||
f.write("\ndef get():\n\treturn ct")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,58 @@
|
||||
import numpy as np
|
||||
import galois
|
||||
import random
|
||||
|
||||
n = 127
|
||||
k = 32
|
||||
order = 2 ** 7
|
||||
GF = galois.GF(order)
|
||||
|
||||
def main():
|
||||
S = generate_S()
|
||||
G = generate_G()
|
||||
P = generate_P()
|
||||
G_ = S @ G @ P
|
||||
export_pubkey(G_)
|
||||
export_privkey(S, P)
|
||||
print("Done!")
|
||||
|
||||
def generate_S():
|
||||
S = GF.Random((k, k))
|
||||
while np.linalg.det(S) == 0:
|
||||
S = GF.Random((k, k))
|
||||
return S
|
||||
|
||||
def generate_G():
|
||||
rs = galois.ReedSolomon(n, k, field=GF)
|
||||
G = rs.G
|
||||
return G
|
||||
|
||||
def generate_P():
|
||||
r = [i for i in range(n)]
|
||||
p = []
|
||||
for i in range(n):
|
||||
p.append(r.pop(random.randint(0, n - 1 - i)))
|
||||
P = GF.Zeros((n, n))
|
||||
for i in range(n):
|
||||
P[i, p[i]] = 1
|
||||
return P
|
||||
|
||||
def export_pubkey(G_):
|
||||
rows = [", ".join([str(int(cell)) for cell in row]) for row in G_]
|
||||
output = "G_ = [ " + ",\n".join([f"[{row}]" for row in rows]) + " ]"
|
||||
with open("pubkey.py", "w") as f:
|
||||
f.write(output)
|
||||
f.write("\ndef get():\n\treturn G_")
|
||||
|
||||
def export_privkey(S, P):
|
||||
rows = [", ".join([str(int(cell)) for cell in row]) for row in S]
|
||||
output = "S = [ " + ",\n".join([f"[{row}]" for row in rows]) + " ]\n"
|
||||
rows = [", ".join([str(int(cell)) for cell in row]) for row in P]
|
||||
output += "P = [ " + ",\n".join([f"[{row}]" for row in rows]) + " ]\n"
|
||||
with open("privkey.py", "w") as f:
|
||||
f.write(output)
|
||||
f.write("\ndef get_S():\n\treturn S")
|
||||
f.write("\ndef get_P():\n\treturn P")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,13 @@
|
||||
McEliece cryptosystem implementation
|
||||
|
||||
Usage:
|
||||
0. pip install numpy and galois
|
||||
1. generate.py - generate and save public and private keys
|
||||
2. send pubkey.py and encode.py to your friend
|
||||
3. your friend runs encode.py, write secret string and send message.py to you
|
||||
4. decode.py - get secret string
|
||||
|
||||
Hacker can get your private key if he will know a half of it (and pubkey.py, decode.py and Reed-Solomon algo).
|
||||
Check break.py to understand how hacker can do this.
|
||||
|
||||
todo: check randomization during encode (add vector z, check https://en.wikipedia.org/wiki/McEliece_cryptosystem)
|
Loading…
Reference in New Issue