Add portable version
This commit is contained in:
parent
5d5eb61691
commit
53baea339b
2 changed files with 357 additions and 1 deletions
350
app_local/portable.py
Normal file
350
app_local/portable.py
Normal file
|
@ -0,0 +1,350 @@
|
|||
#pip install pyinstaller
|
||||
#pyinstaller -F -i "icon.ico" portable.py
|
||||
#exe into dist folder
|
||||
|
||||
import numpy as np
|
||||
import galois
|
||||
import random
|
||||
import getpass
|
||||
|
||||
def main():
|
||||
safe_start()
|
||||
|
||||
def safe_start():
|
||||
try:
|
||||
start_menu()
|
||||
except:
|
||||
print("\nUnknown error, maybe ctrl+c\n")
|
||||
|
||||
def start_menu():
|
||||
f = True
|
||||
print("\nA soldering iron is into a black hole.")
|
||||
#thermorectal cryptanalysis
|
||||
if myhash(getpass.getpass("Login: ")) != 1314399736851798576:
|
||||
f = False
|
||||
if myhash(getpass.getpass("Password: ")) != 192441972608755898:
|
||||
f = False
|
||||
if f:
|
||||
print("Authorization successful, wait a bit.")
|
||||
menu()
|
||||
else:
|
||||
print("Permission denied.")
|
||||
print("\nPress ENTER to exit.", end = '')
|
||||
input()
|
||||
|
||||
def menu():
|
||||
order = 2 ** 8
|
||||
n = order - 1
|
||||
k = 210
|
||||
#print(galois.GF(2 ** 8).properties)
|
||||
GF = galois.GF(2, 8, irreducible_poly = "x^8 + x^4 + x^3 + x^2 + 1", primitive_element = "x", verify = False)
|
||||
rs = galois.ReedSolomon(n, k, field = GF)
|
||||
print("\nMcEliece cryptosystem implementation by vovuas2003.\n")
|
||||
print("All necessary txt files must be located in the directory with this exe program.\n")
|
||||
info = "Menu numbers: 0 = exit, 1 = generate keys, 2 = encrypt, 3 = decrypt,\n4 = restore pubkey, 5 = break privkey_s, 6 = break privkey_p; h = help.\n"
|
||||
err = "Error! Check command info and try again!\n"
|
||||
ok = "Operation successful.\n"
|
||||
inp = [str(i) for i in range(7)] + ['h'] + ['1337']
|
||||
print(info)
|
||||
while True:
|
||||
s = input("Menu number: ")
|
||||
while s not in inp:
|
||||
s = input("Wrong menu number, h = help: ")
|
||||
if s == 'h':
|
||||
print(info)
|
||||
elif s == '0':
|
||||
print("\nGood luck!")
|
||||
break
|
||||
elif s == '1':
|
||||
print("This operation will rewrite pubkey.txt, privkey_s.txt and privkey_p.txt; are you sure?")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
generate(n, k, GF, rs)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '2':
|
||||
print("Write your text into text.txt; pubkey.txt is required, message.txt will be rewritten.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
encrypt(n, k, order, GF)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '3':
|
||||
print("You need message.txt, privkey_s.txt and privkey_p.txt; text.txt will be rewritten.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
decrypt(n, GF, rs)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '4':
|
||||
print("You need privkey_s.txt and privkey_p.txt; pubkey.txt will be rewritten.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
restore_G_(n, GF, rs)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '5':
|
||||
print("You need pubkey.txt and privkey_p.txt; privkey_s.txt will be rewritten.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
break_S(n, k, GF)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '6':
|
||||
print("You need pubkey.txt and privkey_s.txt; privkey_p.txt will be rewritten.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
break_P(n, GF, rs)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '1337':
|
||||
c = input("Move the soldering iron into the black hole number: ")
|
||||
try:
|
||||
PT(int(c))
|
||||
except:
|
||||
print("Iron: 'I don't know this hole.'")
|
||||
continue
|
||||
else:
|
||||
print("Impossible behaviour, mistake in source code!\nThe string allowed in the inp array is not bound to the call of any function!")
|
||||
break
|
||||
|
||||
def get_yes_no():
|
||||
s = input("Confirm (0 = go back, 1 = continue): ")
|
||||
while s not in ['0', '1']:
|
||||
s = input("Try again, 0 or 1: ")
|
||||
return int(s)
|
||||
|
||||
def myhash(s, m = 2**61 - 1, p = 257):
|
||||
a = 0
|
||||
for i in range(len(s)):
|
||||
a = ((a * p) % m + ord(s[i])) % m
|
||||
return a
|
||||
|
||||
def PT(m):
|
||||
M = 5
|
||||
if m == 0:
|
||||
print("Iron: 'OK, I will choose the number by myself.'")
|
||||
while m == 0:
|
||||
m = random.randint(-M, M)
|
||||
s = "PT!"
|
||||
p = " "
|
||||
f = False
|
||||
if m < 0:
|
||||
s, p = p, s
|
||||
m *= -1
|
||||
f = True
|
||||
if m > M:
|
||||
print("Iron: 'Are you sure to move me so far?'")
|
||||
if(not get_yes_no()):
|
||||
return
|
||||
print()
|
||||
if f:
|
||||
print(p * (10 * m + 1))
|
||||
print(p + (s * 3 + p + s * 3 + p + s + p) * m)
|
||||
print(p + (s + p + s + p * 2 + s + p * 2 + s + p) * m)
|
||||
print(p + (s * 3 + p * 2 + s + p * 2 + s + p) * m)
|
||||
print(p + (s + p * 4 + s + p * 4) * m)
|
||||
print(p + (s + p * 4 + s + p * 2 + s + p) * m)
|
||||
if f:
|
||||
print(p * (10 * m + 1))
|
||||
print()
|
||||
|
||||
def generate(n, k, GF, rs):
|
||||
S = generate_S(k, GF)
|
||||
G = rs.G
|
||||
P, p = generate_P(n, GF)
|
||||
G_ = S @ G @ P
|
||||
write_pubkey(G_)
|
||||
write_privkey(S, p)
|
||||
|
||||
def generate_S(k, GF):
|
||||
S = GF.Random((k, k))
|
||||
while np.linalg.det(S) == 0:
|
||||
S = GF.Random((k, k))
|
||||
return S
|
||||
|
||||
def generate_P(n, GF):
|
||||
r = [i for i in range(n)]
|
||||
p = []
|
||||
for i in range(n):
|
||||
p.append(r.pop(random.randint(0, n - 1 - i)))
|
||||
P = GF.Zeros((n, n))
|
||||
for i in range(n):
|
||||
P[i, p[i]] = 1
|
||||
return P, p
|
||||
|
||||
def write_pubkey(G_):
|
||||
rows = [" ".join([str(int(cell)) for cell in row]) for row in G_]
|
||||
output = "\n".join(rows)
|
||||
with open("pubkey.txt", "w") as f:
|
||||
f.write(output)
|
||||
|
||||
def write_privkey(S, p):
|
||||
output = " ".join([str(i) for i in p])
|
||||
with open("privkey_p.txt", "w") as f:
|
||||
f.write(output)
|
||||
rows = [" ".join([str(int(cell)) for cell in row]) for row in S]
|
||||
output = "\n".join(rows)
|
||||
with open("privkey_s.txt", "w") as f:
|
||||
f.write(output)
|
||||
|
||||
def read_pubkey():
|
||||
out = []
|
||||
tmp = []
|
||||
with open("pubkey.txt", "r") as f:
|
||||
while True:
|
||||
tmp = f.readline()
|
||||
if not tmp:
|
||||
break
|
||||
out.append([int(i) for i in tmp.split()])
|
||||
return out
|
||||
|
||||
def read_privkey_s():
|
||||
out = []
|
||||
tmp = []
|
||||
with open("privkey_s.txt", "r") as f:
|
||||
while True:
|
||||
tmp = f.readline()
|
||||
if not tmp:
|
||||
break
|
||||
out.append([int(i) for i in tmp.split()])
|
||||
return out
|
||||
|
||||
def read_privkey_p():
|
||||
with open("privkey_p.txt", "r") as f:
|
||||
out = f.readline().split()
|
||||
return [int(i) for i in out]
|
||||
|
||||
def build_P(n, GF, p):
|
||||
P = GF.Zeros((n, n))
|
||||
for i in range(n):
|
||||
P[i, p[i]] = 1
|
||||
return P
|
||||
|
||||
def build_P_inv(n, GF, p):
|
||||
P = GF.Zeros((n, n))
|
||||
for i in range(n):
|
||||
P[p[i], i] = 1
|
||||
return P
|
||||
|
||||
def pad_message(msg: bytes, pad_size: int) -> list[int]:
|
||||
padding = pad_size - (len(msg) % pad_size)
|
||||
return list(msg + padding.to_bytes() * padding)
|
||||
|
||||
def unpad_message(msg):
|
||||
padding_byte = msg[-1]
|
||||
for i in range(1, padding_byte + 1):
|
||||
if msg[-i] != padding_byte:
|
||||
print("Wrong privkey!")
|
||||
raise Exception()
|
||||
return msg[:-padding_byte]
|
||||
|
||||
def encrypt(n, k, order, GF):
|
||||
G_ = GF(read_pubkey())
|
||||
with open("text.txt", "r") as f:
|
||||
text = f.read()
|
||||
text = text.encode()
|
||||
with open("message.txt", "w") as f:
|
||||
while len(text) > k - 1:
|
||||
tmp = text[: k - 1]
|
||||
text = text[k - 1 :]
|
||||
c = encrypt_one(n, k, order, GF, G_, tmp)
|
||||
f.write(" ".join([str(i) for i in c]))
|
||||
f.write("\n")
|
||||
c = encrypt_one(n, k, order, GF, G_, text)
|
||||
f.write(" ".join([str(i) for i in c]))
|
||||
|
||||
def encrypt_one(n, k, order, GF, G_, text):
|
||||
msg = pad_message(text, k)
|
||||
m = GF(msg)
|
||||
c = m.T @ G_
|
||||
t = (n - k) // 2
|
||||
z = np.zeros(n, dtype = int)
|
||||
p = [i for i in range(n)]
|
||||
for i in range(t):
|
||||
ind = p.pop(random.randint(0, n - 1 - i))
|
||||
z[ind] += random.randint(1, order - 1)
|
||||
z[ind] %= order
|
||||
return c + GF(z)
|
||||
|
||||
def decrypt(n, GF, rs):
|
||||
S_inv = np.linalg.inv(GF(read_privkey_s()))
|
||||
P_inv = GF(build_P_inv(n, GF, read_privkey_p()))
|
||||
s = []
|
||||
with open("message.txt", "r") as inp, open("text.txt", "w") as out:
|
||||
while True:
|
||||
msg = inp.readline()
|
||||
if not msg:
|
||||
break
|
||||
msg = GF(list(map(int, msg.split())))
|
||||
s += decrypt_one(rs, S_inv, P_inv, msg)
|
||||
out.write(bytes(s).decode())
|
||||
|
||||
def decrypt_one(rs, S_inv, P_inv, msg):
|
||||
msg = msg @ P_inv
|
||||
msg, e = rs.decode(msg, errors = True)
|
||||
if e == -1:
|
||||
print("Too many erroneous values in message!")
|
||||
raise Exception()
|
||||
msg = msg @ S_inv
|
||||
msg = [int(i) for i in msg]
|
||||
msg = unpad_message(msg)
|
||||
return msg
|
||||
|
||||
def restore_G_(n, GF, rs):
|
||||
S = GF(read_privkey_s())
|
||||
G = rs.G
|
||||
P = GF(build_P(n, GF, read_privkey_p()))
|
||||
G_ = S @ G @ P
|
||||
write_pubkey(G_)
|
||||
|
||||
def break_S(n, k, GF):
|
||||
G_ = GF(read_pubkey())
|
||||
P_inv = GF(build_P_inv(n, GF, read_privkey_p()))
|
||||
S = G_ @ P_inv
|
||||
S = S[:, : k]
|
||||
rows = [" ".join([str(int(cell)) for cell in row]) for row in S]
|
||||
output = "\n".join(rows)
|
||||
with open("privkey_s.txt", "w") as f:
|
||||
f.write(output)
|
||||
|
||||
def break_P(n, GF, rs):
|
||||
G_ = GF(read_pubkey())
|
||||
S_inv = np.linalg.inv(GF(read_privkey_s()))
|
||||
G = rs.G
|
||||
G = G.T
|
||||
G = [[int(i) for i in j] for j in G]
|
||||
GP = S_inv @ G_
|
||||
GP = GP.T
|
||||
GP = [[int(i) for i in j] for j in GP]
|
||||
p = [0 for i in range(n)]
|
||||
f = False
|
||||
for i in range(n):
|
||||
f = False
|
||||
for j in range(n):
|
||||
if G[i] == GP[j]:
|
||||
p[i] = j
|
||||
f = True
|
||||
break
|
||||
if f:
|
||||
continue
|
||||
print("Wrong pubkey and privkey_s combination!")
|
||||
raise Exception()
|
||||
output = " ".join([str(i) for i in p])
|
||||
with open("privkey_p.txt", "w") as f:
|
||||
f.write(output)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -1,5 +1,7 @@
|
|||
McEliece cryptosystem implementation
|
||||
|
||||
Update: portable version is available! All functions in one file. New features and some improvements!
|
||||
|
||||
Usage:
|
||||
0. pip install numpy and galois
|
||||
1. generate.py - generate and save public and private keys
|
||||
|
@ -10,4 +12,8 @@ Usage:
|
|||
Hacker can get your private key if he will know a half of it (and pubkey.py, decode.py and Reed-Solomon algo).
|
||||
Check break.py to understand how hacker can do this.
|
||||
|
||||
Notice: left part of G is E, because we use Reed-Solomon algo; so left part of S @ G is S and cutting right colomns works; my_fix(G) returns E and in break_S we needn't get inv(G), just S = my_fix(G_ @ inv(P)); try break_S with another (not Reed-Solomon) code (matrix G will be different; will my_fix(G) and my_fix(G_) return nonsingular matrices?; of course, rank(G) = rank(G_) = k and we can iterate through all possible combinations of column deletions and find one that does not lead to nonsingular matrices); another way to get S is calculating it row by row (solving k systems, each has n equations with k variables, k < n, but we need to do it in Galois Field).
|
||||
todo:
|
||||
0. build portable exe with pyinstaller
|
||||
1. left part of G is E, because we use Reed-Solomon algo; so left part of S @ G is S and cutting right colomns works; my_fix(G) returns E and in break_S we needn't get inv(G), just S = my_fix(G_ @ inv(P)); try break_S with another (not Reed-Solomon) code (matrix G will be different; will my_fix(G) and my_fix(G_) return nonsingular matrices?; of course, rank(G) = rank(G_) = k and we can iterate through all possible combinations of column deletions and find one that does not lead to nonsingular matrices); another way to get S is calculating it row by row (solving k systems, each has n equations with k variables, k < n, but we need to do it in Galois Field)
|
||||
2. DONE! check randomization during encode (add vector z, check https://en.wikipedia.org/wiki/McEliece_cryptosystem)
|
||||
3. DONE! make presentation that explains McEliece cryptosystem
|
||||
|
|
Loading…
Reference in a new issue