Version 2
parent
339cc2bed6
commit
3bdab827ff
@ -0,0 +1,290 @@
|
||||
#pyinstaller -F -i "icon.ico" McEliece_console_v2.py
|
||||
|
||||
import hashlib
|
||||
import getpass
|
||||
|
||||
def main():
|
||||
safe_start()
|
||||
|
||||
def safe_start():
|
||||
try:
|
||||
start_menu()
|
||||
except:
|
||||
print("\nUnknown error (maybe ctrl+c), emergency exit!")
|
||||
|
||||
def start_menu():
|
||||
f = True
|
||||
print("\nWhat is the author's nickname?")
|
||||
#vovuas 2003
|
||||
if myhash(getpass.getpass("Letters: ")) != 132782522349988:
|
||||
f = False
|
||||
if myhash(getpass.getpass("Digits: ")) != 851912389:
|
||||
f = False
|
||||
if f:
|
||||
print("Authorization successful, wait a bit.")
|
||||
menu()
|
||||
else:
|
||||
print("Permission denied.")
|
||||
print("\nPress ENTER to exit.", end = '')
|
||||
input()
|
||||
|
||||
def menu():
|
||||
import cryptosystem_core_v2 as ME_core
|
||||
core = ME_core.McEliece_core()
|
||||
global_info = "All files are interpreted as raw bytes and must be located in the directory with this executable file.\nDefault filenames with .bin extension: pubkey, privkey_S, privkey_p, plaintext, ciphertext, ciphered_string.\nDon't forget to import (or generate) keys before encryption/decryption and after changing config!\nYou can restore any one key from two another (don't forget to import before).\n"
|
||||
info = "Menu numbers: 0 = exit, s = print short info, h = print this info, g = print global info, c = change config;\n1 = generate keys, 10 = unsafe generate keys (seed = hash(password)),\n11 = export pubkey, 12 = export privkey_S, 13 = export privkey_p,\n14 = import pubkey, 15 = import privkey_S, 16 = import privkey_p,\n17 = restore pubkey, 18 = restore privkey_S, 19 = restore privkey_p;\n2 = encrypt,\n21 = encrypt non-default filename, 22 = encrypt string from keyboard, 23 = encrypt hided string.\n3 = decrypt,\n31 = decrypt non-default filename, 32 = decrypt string and show on screen\n"
|
||||
short_info = "0 = exit, s/h/g = print short/extended/global info, c = change config;\n1 = generate keys, 2 = encrypt, 3 = decrypt\n"
|
||||
err = "Error! Check global info (menu number g) and try again!\n"
|
||||
ok = "Operation successful.\n"
|
||||
inp = ['0', 's', 'h', 'g', 'c'] + [str(i) for i in range(1, 4)] + [str(i) for i in range(10, 20)] + [str(i) for i in range(21, 24)] + [str(i) for i in range(31, 33)] + ['1337']
|
||||
print("\nMcEliece cryptosystem implementation by vovuas2003. Version 2.\n")
|
||||
print(global_info)
|
||||
print(info)
|
||||
while True:
|
||||
s = input("Menu number: ")
|
||||
while s not in inp:
|
||||
s = input("Wrong menu number; h = help, s = short help: ")
|
||||
if s == '0':
|
||||
print("\nGood luck!")
|
||||
break
|
||||
elif s == 's':
|
||||
print(short_info)
|
||||
elif s == 'h':
|
||||
print(info)
|
||||
elif s == 'g':
|
||||
print(global_info)
|
||||
elif s == 'c':
|
||||
n, k = core.get_config()
|
||||
print("Default config is 255 210, current is " + str(n) + " " + str(k) + ". Change config? Also reset all keys!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
print("Config is two numbers n >= k >= 2; (3 * 5 * 17) mod n = 0. Larger values = larger keys.\nRandomly change (n - k) div 2 bytes during encryption, but add (n - k + 1) bytes to each chunk with len (k - 1).")
|
||||
n, k = map(int, input("Write n and k separated by a space: ").split())
|
||||
core.change_config(n, k)
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '1':
|
||||
print("Reset all keys!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.generate_keys()
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '10':
|
||||
print("It is better to use menu number 1 for true random!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.generate_keys(normalhash(getpass.getpass("Password for hash: ")))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '11':
|
||||
print("Rewrite pubkey.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
write_file("pubkey.bin", bytes(core.get_pubkey()))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '12':
|
||||
print("Rewrite privkey_S.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
write_file("privkey_S.bin", bytes(core.get_privkey_S()))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '13':
|
||||
print("Rewrite privkey_p.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
write_file("privkey_p.bin", bytes(core.get_privkey_p()))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '14':
|
||||
print("Load pubkey.bin into cryptosystem.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.set_pubkey([int(i) for i in read_file("pubkey.bin")])
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '15':
|
||||
print("Load privkey_S.bin into cryptosystem.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.set_privkey_S([int(i) for i in read_file("privkey_S.bin")])
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '16':
|
||||
print("Load privkey_p.bin into cryptosystem.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.set_privkey_p([int(i) for i in read_file("privkey_p.bin")])
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '17':
|
||||
print("Rewrite pubkey inside cryptosystem.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.restore_pubkey()
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '18':
|
||||
print("Rewrite privkey_S inside cryptosystem.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.restore_privkey_S()
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '19':
|
||||
print("Rewrite privkey_p inside cryptosystem.")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
core.restore_privkey_p()
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '2':
|
||||
print("Need plaintext.bin, rewrite ciphertext.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
write_file("ciphertext.bin", bytes(core.encrypt([int(i) for i in read_file("plaintext.bin")])))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '21':
|
||||
print("Type names with extensions!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
inp_name = input("File to encrypt: ")
|
||||
out_name = input("Name for save: ")
|
||||
write_file(out_name, bytes(core.encrypt([int(i) for i in read_file(inp_name)])))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '22':
|
||||
print("Rewrite ciphered_string.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
inp_str = input("String to encrypt: ")
|
||||
write_file("ciphered_string.bin", bytes(core.encrypt([int(i) for i in inp_str.encode('utf-8')])))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '23':
|
||||
print("Rewrite ciphered_string.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
inp_str = getpass.getpass("Hided string to encrypt: ")
|
||||
write_file("ciphered_string.bin", bytes(core.encrypt([int(i) for i in inp_str.encode('utf-8')])))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '3':
|
||||
print("Need ciphertext.bin, rewrite plaintext.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
write_file("plaintext.bin", bytes(core.decrypt([int(i) for i in read_file("ciphertext.bin")])))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '31':
|
||||
print("Type names with extensions!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
inp_name = input("File to decrypt: ")
|
||||
out_name = input("Name for save: ")
|
||||
write_file(out_name, bytes(core.decrypt([int(i) for i in read_file(inp_name)])))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '32':
|
||||
print("Need ciphered_string.bin!")
|
||||
if(not get_yes_no()):
|
||||
continue
|
||||
try:
|
||||
print("Deciphered string: " + bytes(core.decrypt([int(i) for i in read_file("ciphered_string.bin")])).decode('utf-8'))
|
||||
print(ok)
|
||||
except:
|
||||
print(err)
|
||||
elif s == '1337':
|
||||
PT()
|
||||
else:
|
||||
print("Impossible behaviour, mistake in source code, emergency exit!\nThe string allowed in the inp array is not bound to the call of any function!")
|
||||
break
|
||||
|
||||
def write_file(name, data):
|
||||
with open(name, "wb") as f:
|
||||
f.write(data)
|
||||
|
||||
def read_file(name):
|
||||
with open(name, "rb") as f:
|
||||
data = f.read()
|
||||
return data
|
||||
|
||||
def get_yes_no():
|
||||
s = input("Confirm (0 = go back, 1 = continue): ")
|
||||
while s not in ['0', '1']:
|
||||
s = input("Try again, 0 or 1: ")
|
||||
return int(s)
|
||||
|
||||
def myhash(s, m = 2**61 - 1, p = 257):
|
||||
a = 0
|
||||
for i in range(len(s)):
|
||||
a = ((a * p) % m + ord(s[i])) % m
|
||||
return a
|
||||
|
||||
def normalhash(s):
|
||||
return int(hashlib.sha256(bytearray(s, 'utf-8')).hexdigest(), 16)
|
||||
|
||||
def PT(m = -3, M = 3):
|
||||
if m == 0 or abs(m) > M:
|
||||
print("PT!")
|
||||
return
|
||||
s = "PT!"
|
||||
p = " "
|
||||
f = False
|
||||
if m < 0:
|
||||
s, p = p, s
|
||||
m *= -1
|
||||
f = True
|
||||
print()
|
||||
if f:
|
||||
print(p * (10 * m + 1))
|
||||
print(p + (s * 3 + p + s * 3 + p + s + p) * m)
|
||||
print(p + (s + p + s + p * 2 + s + p * 2 + s + p) * m)
|
||||
print(p + (s * 3 + p * 2 + s + p * 2 + s + p) * m)
|
||||
print(p + (s + p * 4 + s + p * 4) * m)
|
||||
print(p + (s + p * 4 + s + p * 2 + s + p) * m)
|
||||
if f:
|
||||
print(p * (10 * m + 1))
|
||||
print()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,267 @@
|
||||
#McEliece cryptosystem implementation by vovuas2003
|
||||
#v2. Power of Python OOP.
|
||||
|
||||
#Usage (check main function or class implementation):
|
||||
#G = pubkey; S and p = privkeys; text = plaintext; msg = encrypted text.
|
||||
#All these variables must be lists of integers from 0 to 255. Easy to use binary files (check console_v2).
|
||||
#It is possible to rewrite my class McEliece_core and add changing the order of Galois Field (check galois lib docs) to M, so all these variables will be lists of integers from 0 to M-1.
|
||||
#But it will be impossible to save keys and encrypted texts as binary files. Also you will need to add polynomial database for pyinstaller.
|
||||
|
||||
import numpy as np
|
||||
import galois
|
||||
import random
|
||||
|
||||
#import cryptosystem_core_v2 as ME_core
|
||||
#core = ME_core.McEliece_core()
|
||||
|
||||
def main(): #comment "return" for testing
|
||||
return
|
||||
core = McEliece_core()
|
||||
n, k = core.get_config()
|
||||
print(n, k)
|
||||
core.change_config(5, 3) #check comments in class implementation to understand possible values
|
||||
n, k = core.get_config()
|
||||
print(n, k)
|
||||
print()
|
||||
core.generate_keys() #true random
|
||||
print(core.get_pubkey())
|
||||
print(core.get_privkey_S())
|
||||
print(core.get_privkey_p())
|
||||
print()
|
||||
core.generate_keys(sum([ord(i) for i in list("password")])) #very simple seed
|
||||
G = core.get_pubkey()
|
||||
S = core.get_privkey_S()
|
||||
p = core.get_privkey_p()
|
||||
print(G)
|
||||
print(S)
|
||||
print(p)
|
||||
print()
|
||||
core.change_config(5, 3) #unset all keys inside core
|
||||
core.set_privkey_S(S)
|
||||
core.set_privkey_p(p)
|
||||
core.restore_pubkey()
|
||||
print(core.get_pubkey() == G)
|
||||
core.change_config(5, 3) #unset all keys inside core
|
||||
core.set_pubkey(G)
|
||||
core.set_privkey_p(p)
|
||||
core.restore_privkey_S()
|
||||
print(core.get_privkey_S() == S)
|
||||
core.change_config(5, 3) #unset all keys inside core
|
||||
core.set_pubkey(G)
|
||||
core.set_privkey_S(S)
|
||||
core.restore_privkey_p()
|
||||
print(core.get_privkey_p() == p)
|
||||
print()
|
||||
for j in range(2):
|
||||
text = [i + 1 for i in range(5)]
|
||||
msg = core.encrypt(text)
|
||||
print(msg)
|
||||
text = core.decrypt(msg)
|
||||
print(text)
|
||||
print()
|
||||
print("All tests are finished!")
|
||||
|
||||
class McEliece_core:
|
||||
def __init__(self):
|
||||
self._order = 256 #p^m = 2**8; encryption of each byte
|
||||
self._n = 255 #(order - 1) mod n = 0 for Reed Solomon code; 255 = 3 * 5 * 17 = (order - 1)
|
||||
self._k = 210 #2 <= k <= n; randomly change (n - k) div 2 bytes during encryption, but add (n - k + 1) bytes to each chunk with len (k - 1); k != 1 for padding function; k almost equal to n is very bad because of small amount of randomly changed bytes (k == n -> privkey for decryption == numpy.linalg.inv(pubkey))
|
||||
self._GF = galois.GF(2, 8, irreducible_poly = "x^8 + x^4 + x^3 + x^2 + 1", primitive_element = "x", verify = False) #hardcoded galois.GF(2**8).properties for pyinstaller
|
||||
self._rs = galois.ReedSolomon(self._n, self._k, field = self._GF)
|
||||
self._G = self._GF.Zeros((self._k, self._n)) #pubkey
|
||||
self._S = self._GF.Zeros((self._k, self._k)) #1st part of privkey
|
||||
self._S_inv = self._GF.Zeros((self._k, self._k)) #for decryption
|
||||
self._P = self._GF.Zeros((self._n, self._n)) #2nd part of privkey
|
||||
self._P_inv = self._GF.Zeros((self._n, self._n)) #for decryption
|
||||
self._p = [0 for i in range(self._n)] #compact format of P as a permutation array
|
||||
def change_config(self, n, k):
|
||||
try:
|
||||
if k < 2:
|
||||
raise Exception()
|
||||
rs = galois.ReedSolomon(n, k, field = self._GF)
|
||||
except:
|
||||
raise Exception()
|
||||
else:
|
||||
self._n = n
|
||||
self._k = k
|
||||
self._rs = rs
|
||||
#Also unset all keys!
|
||||
self._G = self._GF.Zeros((self._k, self._n))
|
||||
self._S = self._GF.Zeros((self._k, self._k))
|
||||
self._S_inv = self._GF.Zeros((self._k, self._k))
|
||||
self._P = self._GF.Zeros((self._n, self._n))
|
||||
self._P_inv = self._GF.Zeros((self._n, self._n))
|
||||
self._p = [0 for i in range(self._n)]
|
||||
def get_config(self):
|
||||
return self._n, self._k
|
||||
def generate_keys(self, seed = None):
|
||||
if seed == None:
|
||||
self._generate_S()
|
||||
self._generate_P()
|
||||
elif type(seed) != int:
|
||||
raise Exception()
|
||||
else:
|
||||
self._unsafe_generate_S(seed % (2**32))
|
||||
self._unsafe_generate_P(seed % (2**32))
|
||||
self._G = self._S @ self._rs.G @ self._P
|
||||
def get_pubkey(self):
|
||||
return [int(i) for j in self._G for i in j]
|
||||
def get_privkey_S(self):
|
||||
return [int(i) for j in self._S for i in j]
|
||||
def get_privkey_p(self):
|
||||
return self._p
|
||||
def set_pubkey(self, G):
|
||||
try:
|
||||
G = [G[i - self._n : i] for i in range(self._n, self._n * self._k + self._n, self._n)]
|
||||
G = self._GF(G)
|
||||
except:
|
||||
raise Exception()
|
||||
else:
|
||||
self._G = G
|
||||
def set_privkey_S(self, S):
|
||||
try:
|
||||
S = [S[i - self._k : i] for i in range(self._k, self._k * self._k + self._k, self._k)]
|
||||
S = self._GF(S)
|
||||
S_inv = np.linalg.inv(S)
|
||||
except:
|
||||
raise Exception()
|
||||
else:
|
||||
self._S = S
|
||||
self._S_inv = S_inv
|
||||
def set_privkey_p(self, p):
|
||||
if sorted(p) != [i for i in range(self._n)]:
|
||||
raise Exception()
|
||||
else:
|
||||
self._p = p
|
||||
self._P = self._GF.Zeros((self._n, self._n))
|
||||
self._P_inv = self._GF.Zeros((self._n, self._n))
|
||||
for i in range(self._n):
|
||||
self._P[i, p[i]] = 1
|
||||
self._P_inv[p[i], i] = 1
|
||||
def restore_pubkey(self):
|
||||
self._G = self._S @ self._rs.G @ self._P
|
||||
def restore_privkey_S(self):
|
||||
S = self._G @ self._P_inv
|
||||
S = self._GF(S[:, : self._k])
|
||||
try:
|
||||
S_inv = np.linalg.inv(S)
|
||||
except:
|
||||
raise Exception()
|
||||
self._S = S
|
||||
self._S_inv = S_inv
|
||||
def restore_privkey_p(self):
|
||||
G = self._rs.G
|
||||
G = G.T
|
||||
G = [[int(i) for i in j] for j in G]
|
||||
GP = self._S_inv @ self._G
|
||||
GP = GP.T
|
||||
GP = [[int(i) for i in j] for j in GP]
|
||||
p = [0 for i in range(self._n)]
|
||||
f = False
|
||||
for i in range(self._n):
|
||||
f = False
|
||||
for j in range(self._n):
|
||||
if G[i] == GP[j]:
|
||||
p[i] = j
|
||||
f = True
|
||||
break
|
||||
if f:
|
||||
continue
|
||||
raise Exception()
|
||||
self._p = p
|
||||
self._P = self._GF.Zeros((self._n, self._n))
|
||||
self._P_inv = self._GF.Zeros((self._n, self._n))
|
||||
for i in range(self._n):
|
||||
self._P[i, p[i]] = 1
|
||||
self._P_inv[p[i], i] = 1
|
||||
def encrypt(self, text):
|
||||
try:
|
||||
out = []
|
||||
while len(text) > self._k - 1:
|
||||
tmp = text[: self._k - 1]
|
||||
text = text[self._k - 1 :]
|
||||
out += self._encrypt_one(tmp)
|
||||
out += self._encrypt_one(text)
|
||||
return out
|
||||
except:
|
||||
raise Exception()
|
||||
def decrypt(self, msg):
|
||||
try:
|
||||
msg = [msg[i - self._n : i] for i in range(self._n, len(msg) + self._n, self._n)]
|
||||
msg = [self._decrypt_one(self._GF(i)) for i in msg]
|
||||
return [i for j in msg for i in j]
|
||||
except:
|
||||
raise Exception()
|
||||
#End of top-level functions, please do NOT use functions below without understanding!
|
||||
def _generate_S(self):
|
||||
S = self._GF.Random((self._k, self._k))
|
||||
while np.linalg.det(S) == 0:
|
||||
S = self._GF.Random((self._k, self._k))
|
||||
self._S = S
|
||||
self._S_inv = np.linalg.inv(S)
|
||||
def _generate_P(self):
|
||||
r = [i for i in range(self._n)]
|
||||
p = []
|
||||
for i in range(self._n):
|
||||
p.append(r.pop(random.randint(0, self._n - 1 - i)))
|
||||
self._p = p
|
||||
self._P = self._GF.Zeros((self._n, self._n))
|
||||
self._P_inv = self._GF.Zeros((self._n, self._n))
|
||||
for i in range(self._n):
|
||||
self._P[i, p[i]] = 1
|
||||
self._P_inv[p[i], i] = 1
|
||||
def _unsafe_generate_S(self, seed):
|
||||
pseudo = np.random.RandomState(seed)
|
||||
S = self._GF(pseudo.randint(0, self._order, (self._k, self._k)))
|
||||
while np.linalg.det(S) == 0:
|
||||
S = self._GF(pseudo.randint(0, self._order, (self._k, self._k)))
|
||||
self._S = S
|
||||
self._S_inv = np.linalg.inv(S)
|
||||
def _unsafe_generate_P(self, seed):
|
||||
pseudo = np.random.RandomState(seed)
|
||||
p = [i for i in range(self._n)]
|
||||
pseudo.shuffle(p)
|
||||
self._p = p
|
||||
self._P = self._GF.Zeros((self._n, self._n))
|
||||
self._P_inv = self._GF.Zeros((self._n, self._n))
|
||||
for i in range(self._n):
|
||||
self._P[i, p[i]] = 1
|
||||
self._P_inv[p[i], i] = 1
|
||||
def _encrypt_one(self, text):
|
||||
msg = self._pad_message(text)
|
||||
m = self._GF(msg)
|
||||
c = m.T @ self._G
|
||||
t = (self._n - self._k) // 2
|
||||
z = np.zeros(self._n, dtype = int)
|
||||
p = [i for i in range(self._n)]
|
||||
for i in range(t):
|
||||
ind = p.pop(random.randint(0, self._n - 1 - i))
|
||||
z[ind] = random.randint(1, self._order - 1)
|
||||
c = c + self._GF(z)
|
||||
return [int(i) for i in c]
|
||||
def _decrypt_one(self, msg):
|
||||
msg = msg @ self._P_inv
|
||||
msg, e = self._rs.decode(msg, errors = True)
|
||||
if e == -1:
|
||||
raise Exception()
|
||||
msg = msg @ self._S_inv
|
||||
msg = [int(i) for i in msg]
|
||||
try:
|
||||
msg = self._unpad_message(msg)
|
||||
except:
|
||||
raise Exception()
|
||||
return msg
|
||||
def _pad_message(self, msg):
|
||||
last_value = self._k - (len(msg) % self._k)
|
||||
return msg + [last_value] * last_value
|
||||
def _unpad_message(self, msg):
|
||||
last_value = msg[-1]
|
||||
if last_value >= self._k or last_value <= 0:
|
||||
raise Exception()
|
||||
for i in range(1, last_value + 1):
|
||||
if msg[-i] != last_value:
|
||||
raise Exception()
|
||||
return msg[: -last_value]
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue